sin^4(t)的积分可以通过三角恒等变换简化。首先,利用sin^2(t) = (1 - cos(2t))/2,可以将sin^4(t)表示为:
sin^4(t) = (sin^2(t))^2 = [(1 - cos(2t))/2]^2
= (1 - 2cos(2t) + cos^2(2t))/4
= (1 - 2cos(2t) + (1 + cos(4t))/2)/4
= (3/8) - (cos(2t))/2 + (cos(4t))/8
接下来,对每一项进行积分:
∫sin^4(t) dt = ∫[(3/8) - (cos(2t))/2 + (cos(4t))/8] dt
= (3/8)t - (1/2)∫cos(2t) dt + (1/8)∫cos(4t) dt
= (3/8)t - (1/2)(1/2)sin(2t) + (1/8)(1/4)sin(4t) + C
= (3/8)t - (1/4)sin(2t) + (1/32)sin(4t) + C
其中C是积分常数。
【考研刷题通】——你的考研刷题好帮手!政治、英语、数学等全部考研科目,海量题库,智能推荐,助你高效备考,轻松过线!立即加入,开启你的考研刷题之旅!【考研刷题通】