在求解考研复合函数求导的练习题时,以下是一个典型的题目解答:
题目:设函数 \( f(x, y) = x^2e^y \),求 \(\frac{\partial z}{\partial x}\) 和 \(\frac{\partial z}{\partial y}\),其中 \( z = f(x, y) \)。
解答:
首先,我们对 \( z = x^2e^y \) 进行偏导数的求解。
1. 求 \(\frac{\partial z}{\partial x}\):
\[
\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(x^2e^y) = 2xe^y
\]
2. 求 \(\frac{\partial z}{\partial y}\):
\[
\frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(x^2e^y) = x^2e^y
\]
因此,\(\frac{\partial z}{\partial x} = 2xe^y\),\(\frac{\partial z}{\partial y} = x^2e^y\)。
微信考研刷题小程序:【考研刷题通】
想要巩固复合函数求导技巧,提高考研科目解题能力?【考研刷题通】小程序帮你实现!涵盖政治、英语、数学等全部考研科目,海量真题,实时更新,助力你高效刷题,冲刺高分。快来体验吧!📱📚🎯