函数表达式在考研数学中是一项基础且重要的内容,以下是一些典型题目的函数表达式:
1. 设函数 \( f(x) = \frac{x^2 - 1}{x - 1} \),则 \( f(x) \) 的极限值为:
\[ \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2 \]
2. 设 \( f(x) = \sqrt{x^2 + 1} \),则 \( f(x) \) 的导数为:
\[ f'(x) = \frac{d}{dx} \sqrt{x^2 + 1} = \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x = \frac{x}{\sqrt{x^2 + 1}} \]
3. 设 \( f(x) = e^{x^2} \),则 \( f(x) \) 的二阶导数为:
\[ f''(x) = \frac{d^2}{dx^2} e^{x^2} = \frac{d}{dx} (2xe^{x^2}) = 2e^{x^2} + 4x^2e^{x^2} = 2(1 + 2x^2)e^{x^2} \]
4. 设 \( f(x) = \ln(x + 1) \),则 \( f(x) \) 的反函数为:
\[ y = \ln(x + 1) \Rightarrow x = e^y - 1 \Rightarrow f^{-1}(y) = e^y - 1 \]
5. 设 \( f(x) = \sin(x) \),则 \( f(x) \) 的傅里叶级数为:
\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos(nx) + b_n \sin(nx) \right) \]
其中,\( a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(x) \, dx = 0 \),\( a_n = \frac{2}{\pi} \int_{-\pi}^{\pi} \sin(x) \cos(nx) \, dx = 0 \),\( b_n = \frac{2}{\pi} \int_{-\pi}^{\pi} \sin(x) \sin(nx) \, dx = \frac{2}{\pi} \int_{-\pi}^{\pi} \sin^2(x) \, dx = \frac{1}{\pi} \)
微信小程序:【考研刷题通】为您提供考研刷题小程序,包括政治刷题,英语刷题,数学等全部考研科目,助您高效备考,轻松过关!立即下载,开启您的考研之旅!