在396考研数学的征途上,每一个难题都是对智慧的磨砺。从线性代数的矩阵运算到概率论的概率分布,从高等数学的极限求解到逻辑推理的严密论证,每一道题都考验着考生的综合能力。为了帮助考生们在这场数学挑战中脱颖而出,以下是一道精选的396考研数学题目:
题目:设函数 \( f(x) = x^3 - 6x^2 + 9x \),求 \( f(x) \) 在区间 \([0, 3]\) 上的最大值和最小值。
解答思路:首先,求出函数的导数 \( f'(x) \),然后找出导数为零的点,即可能的极值点。接着,比较这些极值点以及区间端点处的函数值,确定最大值和最小值。
答案:通过计算,我们得到 \( f'(x) = 3x^2 - 12x + 9 \)。令 \( f'(x) = 0 \),解得 \( x = 1 \) 和 \( x = 3 \)。计算 \( f(0) = 0 \),\( f(1) = 4 \),\( f(3) = 0 \)。因此,函数在区间 \([0, 3]\) 上的最大值为 4,最小值为 0。
备考之路漫漫,但只要坚持,每一道题的解答都是通往成功的阶梯。现在,利用微信考研刷题小程序【考研刷题通】,你可以随时随地刷题,巩固知识点,提升解题能力。无论是政治、英语还是数学,全面覆盖,助你一臂之力,迈向梦想的彼岸!
【考研刷题通】——你的考研刷题好帮手!