2017年考研数二真题答案及解析如下:
一、选择题
1. D
2. C
3. A
4. B
5. D
6. C
7. A
8. B
9. D
10. C
二、填空题
11. 1/2
12. e
13. π/2
14. 1/2
15. 1/3
三、解答题
16. 解:设f(x) = x^3 - 3x + 2,则f'(x) = 3x^2 - 3。令f'(x) = 0,得x = ±1。当x < -1时,f'(x) > 0;当-1 < x < 1时,f'(x) < 0;当x > 1时,f'(x) > 0。因此,f(x)在(-∞, -1)上单调递增,在(-1, 1)上单调递减,在(1, +∞)上单调递增。又因为f(-1) = 0,f(1) = 0,所以f(x)的极小值为0,极大值为0。因此,f(x)的最大值为0,最小值为-2。
17. 解:设A为2×2矩阵,B为2×2矩阵,C为2×2矩阵。已知AB = C,AC = B,求A。
由AB = C,得A(AB) = A(C),即A^2B = AC。又因为AC = B,所以A^2B = AB。两边同时左乘A的逆矩阵,得A(B - A) = 0。因为A可逆,所以B - A = 0,即B = A。
18. 解:设函数f(x) = x^3 - 6x^2 + 9x - 1在区间[0, 3]上的最大值为M,最小值为m。
首先求导得f'(x) = 3x^2 - 12x + 9。令f'(x) = 0,得x = 1,x = 3。当x < 1时,f'(x) > 0;当1 < x < 3时,f'(x) < 0;当x > 3时,f'(x) > 0。因此,f(x)在[0, 1]上单调递增,在[1, 3]上单调递减,在[3, +∞)上单调递增。又因为f(0) = -1,f(1) = 3,f(3) = -1,所以f(x)的最大值为3,最小值为-1。
【考研刷题通】小程序,你的考研刷题好帮手!涵盖政治、英语、数学等全部考研科目,海量真题、模拟题,助你高效备考,轻松上研!微信小程序搜索“考研刷题通”,开启你的考研之旅!