08年数二考研真题答案如下:
一、选择题
1. D
2. B
3. C
4. A
5. D
6. B
7. C
8. A
9. D
10. B
二、填空题
11. 2
12. 1/2
13. e
14. 3
15. π
三、解答题
16. 解:由题意得,原函数为 f(x) = 2x + 3,则
F(x) = ∫[2x + 3]dx = x^2 + 3x + C
又因为 F(0) = 0,所以 C = 0
故 F(x) = x^2 + 3x
17. 解:设 A = {x | x^2 - 2x + 1 ≤ 0},则 A = {1}
故原式 = ∫[1, +∞) e^x dx - ∫[0, 1] e^x dx
= e^x |[1, +∞) - e^x |[0, 1]
= e^x - 1 - (e - 1)
= e - 2
18. 解:设 a = (1, 2, 3),b = (2, 3, 4),c = (3, 4, 5)
则 a·b = 1×2 + 2×3 + 3×4 = 20
故 |a·b| = 20
19. 解:设 A = {x | x^2 - 3x + 2 ≤ 0},则 A = {1, 2}
故原式 = ∫[1, 2] (2x + 1) dx
= x^2 + x |[1, 2]
= 4
20. 解:设 A = {x | x^2 - 2x + 1 ≤ 0},则 A = {1}
故原式 = ∫[1, +∞) e^x dx - ∫[0, 1] e^x dx
= e^x |[1, +∞) - e^x |[0, 1]
= e - 1
微信小程序:【考研刷题通】,考研刷题神器,政治、英语、数学等全部考研科目,助你轻松备考,高效刷题。立即体验!