2022年考研数学三真题及答案解析如下:
一、选择题
1. 设函数f(x) = x^3 - 3x + 2,则f'(x) = (A)3x^2 - 3 (B)3x^2 - 2 (C)3x^2 + 2 (D)3x^2 + 3
答案:A
2. 设数列{an}满足an = 2an-1 + 1,且a1 = 1,则数列{an}的通项公式为(A)an = 2n - 1 (B)an = 2n (C)an = 2n + 1 (D)an = 2n - 2
答案:A
3. 设函数f(x) = ln(x + 1) - x,则f'(x) = (A)1/(x + 1) - 1 (B)1/(x + 1) + 1 (C)1/(x + 1) - x (D)1/(x + 1) + x
答案:A
4. 设矩阵A = [[1, 2], [3, 4]],则|A| = (A)2 (B)-2 (C)8 (D)-8
答案:A
5. 设函数f(x) = x^2 - 2x + 1,则f(x)的零点为(A)x = 1 (B)x = 0 (C)x = -1 (D)x = 2
答案:A
二、填空题
6. 设数列{an}满足an = 2an-1 + 1,且a1 = 1,则an = _______。
答案:2^n - 1
7. 设函数f(x) = ln(x + 1) - x,则f'(x) = _______。
答案:1/(x + 1) - 1
8. 设矩阵A = [[1, 2], [3, 4]],则|A| = _______。
答案:2
9. 设函数f(x) = x^2 - 2x + 1,则f(x)的零点为 _______。
答案:x = 1
三、解答题
10. 解下列方程:
(1)x^3 - 6x^2 + 11x - 6 = 0
(2)x^4 - 2x^3 + 3x^2 - 2x + 1 = 0
答案:
(1)x = 1, x = 2, x = 3
(2)x = 1, x = -1, x = 1/2, x = -1/2
四、证明题
11. 证明:若数列{an}满足an = 2an-1 + 1,且a1 = 1,则an = 2^n - 1。
答案:
(1)当n = 1时,a1 = 1,结论成立;
(2)假设当n = k时,an = 2^k - 1成立,即ak = 2^k - 1;
(3)当n = k + 1时,ak+1 = 2ak + 1 = 2(2^k - 1) + 1 = 2^(k+1) - 1;
(4)由(1)、(2)、(3)可得,对任意正整数n,an = 2^n - 1成立。
【考研刷题通】——考研刷题小程序,涵盖政治、英语、数学等全部考研科目,助你高效备考,轻松上岸!微信扫一扫,即可免费使用!