2019考研数学二真题第17题深度解析:常见误区与正确思路
常见问题解答
问题1:如何理解题干中的“求平面方程”?
答案:这道题要求我们根据已知条件求出一个平面方程。平面方程的一般形式是Ax+By+Cz+D=0,其中A、B、C是平面的法向量的坐标,D是常数项。解决这类问题的关键在于找到平面的法向量,以及确定常数项D的值。在2019年考研数学二真题第17题中,题干给出了两个平面的交线和该交线上一点的信息,我们需要利用这些条件来求出所求平面的法向量,进而写出平面方程。
问题2:为什么不能直接使用点法式方程求解?
答案:点法式方程是求平面方程的一种常用方法,其形式为:(x-x?)/A = (y-y?)/B = (z-z?)/C,其中(x?,y?,z?)是平面上的一点,A、B、C是平面的法向量的坐标。然而,在这道题中,题干给出的条件并不直接提供平面上的一点,而是给出了两个平面的交线和交线上一点的信息。因此,我们需要先通过这两个平面的法向量求出交线的方向向量,再结合交线上一点的信息,才能使用点法式方程或其他方法求解平面方程。
问题3:如何检验求出的平面方程是否正确?
答案:在求出平面方程后,我们需要检验其是否满足题干给出的所有条件。对于这道题来说,我们需要检验求出的平面是否经过题干中给出的交线,以及是否经过题干中给出的交线上的点。如果求出的平面方程同时满足这两个条件,那么它就是正确的答案。我们还可以将题干中给出的其他点的坐标代入平面方程中,看看是否满足方程,以此来进一步检验平面方程的正确性。
内容介绍
2019年考研数学二真题第17题是一道关于平面方程的题目,题干给出了两个平面的交线和该交线上一点的信息,要求我们求出所求平面的方程。这类题目主要考察考生对平面方程的理解和求解能力,以及空间想象能力。解决这类题目的关键在于找到平面的法向量,以及确定常数项D的值。在求解过程中,考生需要熟练运用向量的线性运算、向量积等知识,并注意细节,避免出现计算错误。
剪辑技巧
在制作解析视频或文章时,可以采用以下剪辑技巧来提高内容的可读性和吸引力。可以将解题过程分解成多个步骤,每个步骤用简洁明了的语言进行讲解,并配合相应的图形或动画进行演示。可以适当加入一些过渡效果,使内容之间的衔接更加自然流畅。还可以通过调整字幕的字体、颜色和大小等来突出重点内容,提高观众的阅读体验。要注意控制视频的节奏,避免内容过于冗长或过于紧凑,以免让观众产生疲劳感。